:py:mod:`kosmos.ml.datasets.income_dataset` =========================================== .. py:module:: kosmos.ml.datasets.income_dataset Classes ------- .. py:class:: IncomeDataset(*, min_max_scaler: bool = True) Bases: :py:class:`kosmos.ml.datasets.dataset.SLDataset` Adult Income (Census) dataset — binary classification (>50K vs <=50K). .. admonition:: Notes - Instances: 48,842 (32,561 train + 16,281 test) - Features: 14 (Mix numerical and categorical), after One-Hot-Decision more columns - Classes: 2 (imbalanced; ~24% >50K, ~76% <=50K) .. admonition:: References - UCI ML Repository — Adult https://archive.ics.uci.edu/ml/machine-learning-databases/adult/ Initialize the dataset. :param min_max_scaler: Whether to apply min-max scaling to the features. :type min_max_scaler: bool | .. rubric:: Properties .. py:property:: class_names 0 -> <=50K, 1 -> >50K. :type: Return human-readable class labels .. py:property:: input_dimension Number of feature columns. .. py:property:: output_dim Number of distinct classes.