:py:mod:`kosmos.ml.dataloader` ============================== .. py:module:: kosmos.ml.dataloader Functions --------- .. py:function:: make_train_test_dataloaders(dataset: kosmos.ml.datasets.dataset.SLDataset, train_split: float, batch_size: int, num_train_subsets: int = 1) -> tuple[list[torch.utils.data.DataLoader], torch.utils.data.DataLoader] Split a dataset into training and test subsets and wrap them in DataLoaders. The training loaders shuffle their subset each epoch; the test loader does not. :param dataset: The dataset to be split. :param train_split: Fraction of dataset for training. Test split is 1 - train_split. :param batch_size: Number of samples per batch in both loaders. :param num_train_subsets: Number of partitions to split the training subset into. Defaults to 1. :returns: A tuple containing: - list[DataLoader]: DataLoaders for the partitions of the training subset. - DataLoader: DataLoader for the test subset. :rtype: tuple[list[DataLoader], DataLoader]