:py:mod:`kosmos.ml.config.sl_train` =================================== .. py:module:: kosmos.ml.config.sl_train Classes ------- .. py:class:: SLTrainConfig Supervised learning training configuration. .. attribute:: dataset Supervised learning dataset. :type: SLDataset .. attribute:: train_split Fraction of dataset for training. Test split is 1 - train_split. :type: float .. attribute:: batch_size Number of samples per batch. :type: int .. attribute:: num_epochs Number of training epochs. :type: int .. attribute:: model_config Model configuration. :type: ModelConfig .. attribute:: optimizer_config Optimizer configuration. :type: OptimizerConfig .. attribute:: lr_scheduler_config Learning rate scheduler configuration. Defaults to None. :type: LearningRateSchedulerConfig | None .. attribute:: max_grad_norm Maximum gradient norm. Defaults to 1.0. :type: float | None .. attribute:: loss_config Loss function configuration. :type: LossConfig ---- .. py:class:: FLTrainConfig Bases: :py:class:`SLTrainConfig` Federated learning training configuration. .. attribute:: dataset Supervised learning dataset. :type: SLDataset .. attribute:: train_split Fraction of dataset for training. Test split is 1 - train_split. :type: float .. attribute:: batch_size Number of samples per batch. :type: int .. attribute:: num_epochs Number of training epochs. :type: int .. attribute:: model_config Model configuration. :type: ModelConfig .. attribute:: optimizer_config Optimizer configuration. :type: OptimizerConfig .. attribute:: lr_scheduler_config Learning rate scheduler configuration. Defaults to None. :type: LearningRateSchedulerConfig | None .. attribute:: max_grad_norm Maximum gradient norm. Defaults to 1.0. :type: float | None .. attribute:: loss_config Loss function configuration. :type: LossConfig .. attribute:: num_rounds Number of federated learning rounds. :type: int